Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta Physiologica Sinica ; (6): 27-32, 2012.
Article in Chinese | WPRIM | ID: wpr-335946

ABSTRACT

The present study aimed to investigate the protective effect and mechanism of hydrogen sulfide donor NaHS administration against gastric mucosal injury induced by gastric ischemia-reperfusion (GI-R) in rats. GI-R injury was induced by clamping the celiac artery of adult male SD rats for 30 min and followed by reperfusion for 1 h. The rats were randomly divided into sham group, GI-R group, NaHS group, glibenclamide group and pinacidil group. Gastric mucosal damage was analyzed with macroscopic injured area, deep damage was assessed with histopathology scores, and the hydrogen sulfide concentration in plasma was determined by colorimetric method. The results showed that pretreatment of NaHS significantly reduced the injured area and deep damage of the gastric mucosa induced by GI-R. However, NaHS did not significantly alter the levels of hydrogen sulfide in plasma 14 d after NaHS administration. The gastric protective effect of NaHS during reperfusion could be attenuated by glibenclamide, an ATP-sensitive potassium channel (K(ATP)) blocker. However, K(ATP) opener pinacidil inhibited the GI-R-induced injury. These results suggest that exogenous hydrogen sulfide plays a protective role against GI-R injury in rats possibly through modulation of K(ATP) channel opening.


Subject(s)
Animals , Male , Rats , Gastric Mucosa , Pathology , Hydrogen Sulfide , Metabolism , Ischemic Preconditioning , Methods , KATP Channels , Metabolism , Physiology , Rats, Sprague-Dawley , Reperfusion Injury , Stomach , Sulfides , Pharmacology
2.
Acta Physiologica Sinica ; (6): 133-138, 2002.
Article in Chinese | WPRIM | ID: wpr-279324

ABSTRACT

The effects of paraventricular nucleus (PVN) stimulation and vasopressin on gastric ischemia-reperfusion injury (GI-RI) were investigated in male SD rats of which the celiac artery was clamped for 30 min and reperfused for 1 h by removal of the clamp. The results were as follows. Both electrical and chemical stimulation of the PVN obviously attenuated the GI-RI. Bilateral electrolytic lesion of the nucleus tractus solitarius (NTS) or microinjection of AVP-V(1) receptor antagonist into the NTS could eliminate the protective effect of electrical stimulation of the PVN on GI-RI. Hypophysectomy did not influence the effect of electrical stimulation of the PVN. Both vagotomy and sympathectomy could increase the effect of stimulating PVN on GI-RI. Microinjection of arginine-vasopressin (AVP) into the PVN also attenuated the effect on GI-RI. These results suggest that the PVN and AVP participate in the regulation of GI-RI and play an important role in protection against GI-RI. This protective effect of PVN on GI-RI might be mediated by activation of AVP-ergic neurons in the PVN, which release AVP from the descending projection fibers and activate the AVP-V(1) receptors on the NTS neurons. The vagus and sympathetic nerves are involved in the efferent pathway exerting their effects on GI-RI. Hypophysis does not seem to be involved in the protective effect of PVN stimulation.


Subject(s)
Animals , Male , Rats , Afferent Pathways , Physiology , Electric Stimulation , Paraventricular Hypothalamic Nucleus , Physiology , Rats, Sprague-Dawley , Reperfusion Injury , Therapeutics , Stimulation, Chemical , Stomach , Sympathetic Nervous System , Physiology , Vagus Nerve , Physiology , Vasopressins , Pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL